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Abstract
Household water purifiers are increasingly used to treat drinking water at the household level, but their influence on the
microbiological safety of drinking water has rarely been assessed. In this study, representative purifiers, based on different
filtering processes, were analyzed for their impact on effluent water quality. The results showed that purifiers reduced chemical
qualities such as turbidity and free chlorine. However, a high level of bacteria (102–106 CFU/g) was detected at each stage of
filtration using a traditional culture-dependent method, whereas quantitative PCR with propidium monoazide (PMA) treatment
showed 106–108 copies/L of total viable bacteria in effluent water, indicating elevated microbial contaminants after purifiers. In
addition, high-throughput sequencing revealed a diverse microbial community in effluents and membranes. Proteobacteria
(22.06–97.42%) was the dominant phylum found in all samples, except for purifier B, in which Melainabacteria was most
abundant (65.79%). For waterborne pathogens, Escherichia coli (100–106 copies/g) and Pseudomonas aeruginosa (100–105

copies/g) were frequently detected by qPCR. Sequencing also demonstrated the presence of E. coli (0–6.26%),Mycobacterium
mucogenicum (0.01–3.46%), and P. aeruginosa (0–0.16%) in purifiers. These finding suggest that water from commonly used
household purifiers still impose microbial risks to human health.
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Introduction

In the past decades, source water has been increasingly contam-
inated by various chemicals and emerging pollutants, which rep-
resents a great concern for public health (Hu et al. 2018; Shi et al.
2018). People’s demand for safe and healthy drinking water is
increasing, creating a challenge for public water suppliers. The
microbiological safety of drinking water is crucial for human
health. It is estimated that five million people lose their lives

because of waterborne illness each year (WHO2006). To control
microbiological risks, water is generally disinfected to kill path-
ogens before entering the drinking water distribution system.
However, some persistent bacteria remain in water, and even
proliferate and grow in pipelines (Douterelo et al. 2018; Vaz-
Moreira et al. 2017). Traditional treatment techniques do not
efficiently remove all chemical and microbiological contami-
nants. Therefore, point of use (POU) or household water treat-
ment methods can be useful to improving the quality and safety
of drinking water.

Household water purifier can include multi-step activated
carbon or special absorbent material filters and key step mem-
brane filters. Activated carbon treatment can effectively ad-
sorb organic substances and residual disinfectants, improving
water quality and taste (Korotta-Gamage and Sathasivan
2017). In addition, membrane filtration is another process that
physically removes various contaminants, including bacteria,
viruses, suspended solids, and heavy metals (Shirasaki et al.
2017;Wang et al. 2013). Commonly usedmembrane filtration
technologies include microfiltration (MF), ultrafiltration (UF),
and reverse osmosis (RO), which can filter out 0.5–5-, 0.005–
0.5-, and 0.0007–0.005-μm particles, respectively (Hoslett
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et al. 2018). However, biofilms generated on the surfaces of
moist activated carbon can detach and enter effluents, causing
public health problems (Gibert et al. 2013). Similarly, membrane
filtration systems are also easily fouled by attached microorgan-
isms during routine operation (Shao et al. 2018;Wei et al. 2011).
Membrane fouling of household water purifiers can decrease
membrane flux, and biofilms released from membrane surface
can lead to excessive bacteria in effluents (Su et al. 2009). A
previous study showed that the clinical relevance of
Pseudomonas aeruginosa isolated from filters of household wa-
ter treatment systems (Mombini et al. 2019). However, there is
limited information on microbial contaminants and membrane
fouling in household water purifiers.

The quality of drinking water is traditionally assessed by
measuring cultivable bacteria and attempting to detect fecal
indicator bacteria (Gillespie 2016). However, only a slight
fraction (below 1%) of bacteria in drinking water system can
be measurable by culture-dependent methods; a large propor-
tion of bacteria are in a viable but non-culturable (VBNC)
state (Hammes et al. 2008). Therefore, PCR-based techniques
have been developed to rapidly, accurately, and more compre-
hensively survey microorganisms. For instance, high-
throughput sequencing (HTS) is widely used to show the mi-
crobial diversity in drinking water systems (Bae et al. 2019;
Gerrity et al. 2018; Lin et al. 2014). In addition, quantitative
PCR (qPCR) can target at specific microbes, including path-
ogens (Cui et al. 2017). Furthermore, propidium monoazide
(PMA)–modified PCR method can be applied to distinguish
live from dead cells by inhibiting amplification of DNA from
dead cells, which represent real health risks associated with
drinking water (Gensberger et al. 2014).

This study aimed to investigate microbial contaminations
in household water purifiers, as well as microbial health risks
to humans. Specific objectives were the following: (1) enu-
merate total bacteria both in the water phase and in filter units
of each treatment process; (2) compare total, viable, and
culturable bacteria in water and membrane samples; (3) char-
acterize microbial communities using HTS technology; and
(4) quantify common waterborne pathogens.

Materials and methods

Water sample collection and water quality
measurement

Four representative household water purifier devices designed
with different treatment processes and service times were ob-
tained from residents. Detailed descriptions are provided in
Table 1. The influent and effluent water quality (i.e., temper-
ature, pH, free chlorine, dissolved oxygen (DO), turbidity, and
organic matter indices) was measured three times following
the National Standards for DrinkingWater Quality (GB 5749-

2006) before the devices were disassembled. Several indices
such as temperature, DO, and free chlorine were measured on
site at the time of sampling. To obtain representative samples,
the water was left running for 5 min before collection. After
this, 1.5 L of influent and effluent water was collected in
sterile bottles. The number of total bacteria was determined
by spread plating on nutrient agar (NA) medium at 37 °C for
48 h or on R2A agar at 28 °C for 5 days (Liu et al. 2019).
Moreover, 10 L of influent and effluent water was filtered
through 0.22-μm membrane filters (Millipore, Billerica,
MA, USA) in duplicate at each sample site for later DNA
extraction.

Microorganism collection from padding materials
and membrane filters

To detect microorganisms attached on different purifiers,
each treatment unit was split using a saw. Diagrams of
each purifier are shown in Fig. S1. In purifier A, drinking
water was successively treated with a polypropylene (PP)
cotton filter → pre-activated carbon (AC) filter → AC
filter → composite material (CM) filter → ultrafiltration
(UF) membrane filter, and finally post-activated carbon
(AC) filter. The treatment process of Purifier B was sim-
pler, with only three steps: PP cotton filter, UF membrane
filter, and compressed AC filter. In purifier C, drinking
water was continuously treated with five major steps: PP
cotton filter → pre-AC filter → pre-AC filter → reverse
osmosis (RO) membrane filter → post-AC filter. Purifier
D employed a series of treatment processes: PP cotton
filter, compressed AC filter, UF membrane filter or RO
membrane filter, and post-AC filter.

To obtain the bacteria adhering to membranes, the mem-
branes were cut into pieces using sterile scissors. Both the
packing material and membrane samples were placed in a
sterile saline solution for sonic treatment (KQ-500DE,
China) at 30 min and 40 kHz to separate biomass from the
matrix (Shi et al. 2013). After that, the suspension was left
standing for 5 min to remove large particles, and the superna-
tant was used to determine the amount of biomass in biofilms.
The number of total bacteria was determined on NA or R2A
agar plates in the above incubation conditions.

Table 1 Description of household water purifiers examined in this study

Purifiers Service time Membrane technology Producing country

A 2 years UF China

B 1 year UF America

C 5 years RO China

D 1 year UF and RO China

UF is ultrafiltration; RO is reverse osmosis
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PMA treatment and DNA extraction

To extract total genomic DNA, the supernatants from mem-
brane samples were concentrated by filtering through mem-
brane filters with a 0.22-μm pore size in duplicate. The
second aliquots of membrane filters were intended for pre-
treatment by evenly dropping 500 μL PMA dye (Biotium
Inc., USA) on the surfaces of filters at a final PMA concen-
tration of 50 μg/mL, which was demonstrated to be an effi-
cient concentration based on previous studies (Chen et al.
2017; Hu et al. 2019). In brief, filters were incubated in the
dark for 5 min and then subsequently held on ice and hor-
izontally exposed to a 650-W halogen light at a distance of
approximately 20 cm for 4 min (Gensberger et al. 2014; Liu
et al. 2018). Finally, both the pre-treated and non-treated
samples were cut into small pieces and used for total DNA
extraction with a FastDNA SPIN Kit (MP Biomedicals,
USA) following the manufacturer’s instructions. DNA con-
centration and purity were measured using a ND-1000
NanoDrop spectrophotometer (NanoDrop Technologies,
Wilmington, USA).

Illumina high-throughput sequencing

To determine the diversity and composition of bacterial
communities in water and membrane samples, DNA was
amplified using forward primer 515F (5′GTGCCAGC
MGCCGCGGTAA-3′) and reverse primer 907R (5′-
CCGTCAATTCCTTTGAGTTT-3′) targeting the V4–V5
regions of 16S rRNA (Zhang et al. 2018). In detail,
DNA was first amplified by PCR at 95 °C for 5 min,
followed by 30 cycles at 95 °C for 40 s, 58 °C for
40 s, 72 °C for 40 s, and a finial extension at 72 °C
for 7 min. PCR products were purified using an
AxyPrepDNA Gel Kit (Axygen, CA, USA), and se-
quencing was performed on an Illumina MiSeq platform
using standard procedures (Novogene Bioinformation
Technology Co., Ltd., China).

Raw sequences were filtered and analyzed using a
pipeline in Quantitative Insights into Microbial Ecology
(QIIME) software to exclude low-quality and chimeric
sequences as described in a previous report (Wang et al.
2018). After this, the sequences were clustered into oper-
ational taxonomic units (OTUs) with a 97% threshold.
Species diversity was evaluated in mothur (http://www.
mothur.org). A representative sequence for each OTU
was aligned using the Silva database and Ribosome Database
Project classifier (Song et al. 2018). Hierarchical clustering was
conducted to visualize similarities in bacterial communities
based on unweighted UniFrac metrics. The raw sequencing
data has been submitted to the NCBI Sequence Read Archive
(SRA) with the project accession code of PRJNA576308.

Quantification of total bacteria and potential
pathogens

Total bacteria were quantified based on 16S rRNA using SYBR
Green qPCR. For the SYBR Green qPCR assay, each 20-μL
reaction mixture included 10 μL of SYBR Premix Ex Tap
(Takara, Japan), 0.4 μL of each primer (10 μmol/L), and 1 μL
of template DNA. The PCR cycling procedures were the follow-
ing: 95 °C for 30 s, followed by 35 cycles of 95 °C for 5 s, 60 °C
for 30 s, 72 °C for 30 s, and then 1 cycle of 72 °C for 7 min. In
addition, a TaqMan probe was designed to target five potential
pathogens, namely P. aeruginosa, Salmonella enterica, Shigella,
Escherichia coli, and Legionella pneumophila with 6-carboxy-
fluoresein (FAM) as the fluorescent reporter on the 5′ end and 6-
carboxytetramethylrhodamine (TAMRA) as the quencher dye on
the 3′ end. For the real-time qPCR assay, each 20-μL reaction
mixture contained 10 μL of 2× PCR mixture, 1.0 μL of each
primer, 0.5 μL of each 10 μM probe, and 1 μL DNA template.
The reaction procedures included an initial denaturation step at
95 °C for 10 min, followed by 40 cycles at 95 °C for 15 s and,
60 °C for 1 min. All qPCRs were performed on a 7300 real-time
PCR system (ABI 7300, Applied Biosystems, USA). The primer
sequences used are listed in Table S1. Both DNA templates and
negative controls (DNA replaced with nuclease-free water) were
run in triplicate. In addition, a melting curve was prepared to
verify primer specificity. All standard qPCR curves were con-
structed from 10-fold serial dilutions of the plasmid carrying
target genes ranging from 102 to 107 gene copies per microliter.
The number of target gene copies was calculated based on Ct
values compared with the standard curves described above.

Observation of microbes on membranes by scanning
electron microscopy

The microbial morphology of microbes on membranes was
directly observed by scanning electron microscopy (SEM).
Membrane samples were fixed in 2.5% glutaraldehyde in
phosphate-buffered saline (PBS) for 1 h at 4 °C and washed
three times with PBS at room temperature. Each sample
underwent graded dehydration with 30%, 50%, 70%, and
90% alcohol for 10 min and then treatment with 100% pure
ethyl alcohol for 20 min. Finally, the samples were dried over-
night in a critical point dryer before analysis by SEM (SEM,
Hitachi S-4800, Japan).

Statistical analysis

The physicochemical and biological data from the influent
and effluent water samples were compared statistically with
an analysis of variance (ANOVA) and a significance level of
p < 0.05 using IBM SPSS Statistics 22.0 software.
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Results

Water quality characteristics

As shown in Table 2, levels of free chlorine in effluent water
(0.00–0.06 mg/L) were significantly lower than those in all
influent water (0.41–0.74 mg/L). pH values were around neu-
tral (6.71–7.38) for all water samples, except for effluent water
from RO membranes in purifier D (6.26 ± 0.37). DO ranged
from 8.28 to 8.70 mg/L, but DO in the effluents of purifier C
(RO 5.06 ± 0.11) and purifier D (UF 4.23 ± 0.10, RO 3.79 ±
0.88) were significantly less. Turbidity of 0.08–0.53 NTUwas
observed in influent water samples, but this was less in efflu-
ent water samples (below 0.02 NTU), except for effluent from
the UF membrane in purifier D (0.09 NTU). The values of
NO3-N and total organic carbon (TOC) were slightly de-
creased after UF membrane filtration, but were significantly
reduced after RO membrane filtration. As for temperature, it
ranged from 22.33 to 23.43 °C in three independent sam-
plings. Finally, it should be noted that no bacteria were detect-
ed from influent water cultivated in NA medium, but high
levels of bacteria (0.67–2.59 × 105 CFU/100mL) were detect-
ed in effluent water, especially after RO treatment.

Microbial contaminants in each processing unit

To analyze microbial contaminants at each filtration step in
purifiers, filtration units were disassembled. The bacteria at-
tached padding materials and membranes were enumerated
(Fig. 1). No bacteria grew on NA medium, but 3.33 × 102–
3.67 × 103 CFU/L bacteria were detected in influent water by
R2A plating. Similarly, more bacteria were found on R2A
plates than on NA medium at other treatment steps.
Subsequently, high levels of bacteria (6.12 × 102–3.78 ×
105 CFU/g) were retained at the first step of PP cotton

filtration, and bacterial concentrations were higher on external
surfaces (2.58 × 103–3.78 × 105 CFU/g) than on internal sur-
faces (6.12 × 102–3.11 × 105 CFU/g) because the water in
these systems flowed from outside to inside. In addition, we
found that the color of PP cotton filters became yellow by the
naked eye (data not shown). Moreover, 1.51 × 104–2.88 ×
105 CFU/g of bacteria was maintained in one-step or multi-
step pre-activated carbon or complex material filters in all
purifiers except purifier D. In purifier D, although the number
of bacteria in pre-activated carbon was only 1.59 × 101 CFU/g
on NA medium, there were still 1.03 × 106 CFU/g bacteria
grown on R2Amedium. It should also be noted that there were
no pre-activated carbon filters in purifier B.

The concentration of bacteria increased to 1.12 × 103–
1.24 × 106 CFU/g at the membrane filtration step. Microbial
attachment on membrane filters was directly verified by SEM
(Fig. 2). Microbes were scattered or assembled in small
groups on the surfaces of membranes. However, a lower level
(1.12 × 103 CFU/g) of bacteria was detected on a UF mem-
brane from purifier B on NA medium, which might be due to
remaining free chlorine as there was no pre-activated carbon
filter in this purifier. It should be noted that still 3.33 × 100–
5.98 × 103 CFU/g of bacteria persisted in post-activated car-
bon filters. Finally, the number of bacteria in effluent water
(2.0 × 104–2.30 × 107 CFU/L) was significantly higher than
that in influent water (3.33 × 102–3.67 × 104 CFU/L) when
counted on R2A medium.

Viability of bacteria in water and membrane samples

In this study, three methods, including traditional qPCR,
PMA-modified qPCR, and culture, were employed to quantify
microbial contaminants. As shown in Fig. 3, a high level of
1.26 × 105–2.28 × 106 copies/L total bacteria was detected in
influent water by traditional qPCR, and the concentration of

Table 2 Characteristics of water quality

Samples pH Free chlorine (mg/L) DO (mg/L) Turbidity
(NTU)

NO3—N (mg/
L)

TOC (mg/L) Temperature
(°C)

HPC (CFU/
100 mL)

A-I 7.36 ± 0.04 0.46 ± 0.01 8.61 ± 0.05 0.53 ± 0.01 1.00 ± 0.01 0.82 ± 0.08 22.33 ± 2.32 ND

A-E 7.35 ± 0.06 0.05 ± 0.01 8.55 ± 0.03 ND 0.90 ± 0.00 0.79 ± 0.09 22.47 ± 2.71 9.67 ± 4.93

B-I 7.36 ± 0.03 0.74 ± 0.04 8.61 ± 0.01 0.12 ± 0.01 1.81 ± 0.02 0.92 ± 0.04 22.63 ± 2.34 ND

B-E 7.38 ± 0.07 0.06 ± 0.01 8.70 ± 0.08 0.02 ± 0.00 1.38 ± 0.00 0.91 ± 0.01 22.60 ± 2.78 0.67 ± 1.15

C-I 7.16 ± 0.14 0.41 ± 0.01 8.63 ± 0.03 0.09 ± 0.01 1.19 ± 0.00 1.11 ± 0.18 23.07 ± 2.12 ND

C-E 7.12 ± 0.04 ND 5.06 ± 0.11 0.01 ± 0.00 0.08 ± 0.07 0.12 ± 0.02 22.97 ± 1.61 (1.97 ± 0.12) × 105

D-I 7.13 ± 0.11 0.58 ± 0.09 8.28 ± 0.27 0.08 ± 0.01 1.16 ± 0.02 0.72 ± 0.09 23.03 ± 2.29 ND

D-UW 6.71 ± 0.02 0.01 ± 0.01 4.23 ± 0.10 0.09 ± 0.04 1.39 ± 0.11 0.47 ± 0.01 23.43 ± 2.25 (9.33 ± 1.77) × 104

D-RW 6.26 ± 0.37 0.02 ± 0.01 3.79 ± 0.88 0.01 ± 0.00 0.16 ± 0.01 0.08 ± 0.01 22.96 ± 1.79 (2.59 ± 0.22) × 105

Results were the average value of three independent sampling event (mean ± SD); ND is not detected; HPC (heterotrophic plate count) indicates the
number of total bacteria on NA agar plate. Samples A-I, B-I, C-I, and D-I, and A-E, B-E, C-E, D-UW, and D-RWare influent and effluent water from
purifiers A, B, C, and D, respectively. UW is UF effluent; RW is RO effluent
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total viable bacteria, including cultivable and VBNC cells,
was almost at the same level (1.16 × 105–2.34 × 106

copies/L) revealed by PMA-modified qPCR. However, the
concentration of cultivable cells on R2A medium ranged
3.33 × 102–3.67 × 103 CFU/L in influent water. Besides,

PMA-qPCR can reveal real active bacterial cells including
cells in VBNC state and cultivable cells in household water
purifiers. For example, only 9.67 × 101, 6.67 × 100, and
1.97 × 106 CFU/L were detected by microbiological culture
on NA plates in effluent water from purifiers A, B, and C,

Fig. 1 The number of total
bacteria from different purifiers
determined by incubation in NA
and R2Amedia. a Filter A, b filter
B, c filter C, and d filter D

Fig. 2 Scanning electron micrographs of microorganisms attached to surfaces of different filters membranes. aUltrafiltration (UF) membrane from filter
A, b UF membrane from filter B, c reverse osmosis (RO) membrane from filter C, d UF membrane from filter D, and e RO membrane from filter D
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respectively, but total viable bacteria from these purifiers
based on PMA-qPCR remained at 8.08 × 106, 6.06 × 106,
and 1.28 × 108 copies/L. According to previous studies
(Klappenbach et al. 2000; Stoddard et al. 2014), the copy
number of rRNA operons per bacterial genome varies from
1 to as many as 15. Thus, the concentration of total viable
bacterial cells ranged from 5.39 × 105 to 8.08 × 106, from
4.04 × 105 to 6.06 × 106, and from 8.51 × 106 to 1.28 × 108

cells/L, respectively. So, the difference between the total via-
ble bacterial cells and cultivable cells was 2–5 order of mag-
nitude; i.e., 76.82–100% of the viable cell entered the VBNC
state. However, considering the concentration of cultivable
cells on R2A plates, which was 3.97 × 105, 2.00 × 104, and
1.32 × 107 CFU/L, thus, the proportion of microorganisms in
VBNC state ranged from 26.35 to 95.09%, from 95.05 to
99.67%, and from 0 to 89.66%. In addition, the percentage
of microorganisms in VBNC state fromUF effluent of purifier
D ranged from 0 to 9.62% by R2A plate and from 0 to 64.90%
by NA plate. These values might be lower than actual ones
because of experimental error. Therefore, a large part of bac-
teria entered the VBNC state in this study.

Moreover, the concentrations of bacterial cells in effluent
water and membrane samples were significantly higher than
those in influent water for all purifiers. From purifier C, PMA-
qPCR showed 1.28 × 108 copies/L total viable bacteria in ef-
fluent water and 4.36 × 107 copies/g on membrane compared
with 2.34 × 106 copies/L in influent water. In purifier D,
2.26 × 106 copies/L and 8.29 × 106 copies/L total viable

bacteria were detected in effluent water filter through UF
and ROmembranes, respectively. Finally, many bacterial cells
(4.36 × 107–2.18 × 109 copies copies/g) on membrane sam-
ples were also detected by PMA-qPCR.

Bacterial diversity and community composition
in water and membrane samples

As shown in Table 3, 14 16S rRNA gene (V4–V5) libraries
were constructed to reveal bacterial communities in influent
water, effluent water, and membrane samples from four
household water purifiers. After removing low-quality se-
quences and chimeras, 964,561 effective sequences were ob-
tained. The sequence number of each sample was normalized
and 202–400 OTUs were identified. Notably, microbial com-
munity diversity and species richness in effluent water and
membranes were significantly higher than those in influent
water. For example, the Shannon index for effluent water
and membranes from purifier C were 5.05 and 5.07, respec-
tively, while this value was 2.17 in influent water. Similar
trends were observed in other samples. Furthermore, the cov-
erage index of all samples was over 99.6%, suggesting that
sequencing depth was enough to reveal the bacterial commu-
nity in these samples.

Bacterial communities from all samples were primarily
dominated by Proteobacteria (22.06–77.04%), except for
those in effluent water from purifier B (B-E 6.61%) (Fig. 4).
In particular, a high proportion (97.42%) of bacterial

Fig. 3 Concentrations of total
bacteria from different purifiers
determined by molecular and
culture-dependent technologies. a
Filter A, b filter B, c filter C, and
d filter D
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sequences from influent water for purifier C (C-I) were clas-
sified as Proteobacteria. The phylum Cyanobacteriawas also
relatively abundant in influent water samples from purifier A
(15.74%) and purifier B (9.28%). For sample B-E,
Melainabacteria was the most abundant phylum, occupying
65.79% of total sequences. In addition, Acidobacteria from
influent water showed low abundant (0.07–0.09%), whereas
these bacteria were highly abundant on membrane samples
(6.41–23.75%) and relatively less abundant in effluent water
samples (0.22–5.79%). Similarly, Planctomycetes and
Bacteroidetes displayed a higher abundance in effluent water
and membrane samples than in influent water. The cluster

analysis based on unweighted UniFrac metrics determined
that the microbial community from effluent water was more
likely to cluster with that on membranes (Fig. S2).
Furthermore, the bacterial community in purifier D was rela-
tively distinct from that in the other purifiers.

The top 50 genera in bacteria communities analyzed in this
study are listed in Fig. 5. Genera whose abundance was above
5% in these samples were Bacterium clone SRAO 22 (0–
30.21%), Reyranella sp. (0.01–14.71%), Paenibacillus
borealis (0–12.08%), Trachydiscus minutus (0.01–9.32%),
Desulfosporosinus meridiei (0–7.46%), and Gemmata sp.
28IL (0–5.54%). In addition, with an alignment against the

Table 3 Bacterial diversity of
each sample from different
purifiers based on high-
throughput sequencing of 16S
rRNA gene

Samples Sequences OTUs Shannon Simpson Ace Chao1 Coverage (%)

A-I 74,098 268 2.17 0.45 246.74 245.37 99.8

A-E 42,643 269 5.05 0.94 258.61 252.95 99.9

A-M 80,038 387 5.07 0.92 365.02 377.36 99.8

B-I 78,846 287 3.68 0.73 271.25 286.31 99.8

B-E 74,809 255 3.52 0.85 236.69 234.37 99.8

B-M 80,144 400 5.76 0.96 437.16 444.14 99.7

C-I 65,565 202 0.69 0.14 189.89 177.08 99.8

C-E 80,159 289 4.33 0.88 253.19 252.91 99.8

C-M 80,107 397 5.58 0.96 477.26 484.16 99.6

D-I 69,592 176 1.36 0.33 192.89 188.19 99.9

D-UW 60,882 219 4.07 0.88 240.85 242.38 99.9

D-UM 60,087 294 5.37 0.96 318.60 313.59 99.9

D-RW 64,608 231 3.30 0.80 250.95 247.00 99.9

D-RM 52,983 354 5.06 0.90 367.06 373.33 99.9

OTUs is operational taxonomic units. Sample names A-I, B-I, C-I, and D-I mean the influent water from purifiers
A, B, C, and D, respectively; A-E, B-E, C-E, D-UW, and D-RW mean the effluent water from purifiers A, B, C,
and D, respectively; A-M, B-M, C-M, D-UM, and D-RMmean the membrane samples from purifier A, B, C, and
D, respectively; UM is ultrafiltration membrane, RM is reverse osmosis membrane, UW is UF effluent, and RW is
RO effluent

Fig. 4 Microbial communities in water and membrane samples from
different purifiers at the phylum level. A-I, B-I, C-I, and D-I mean the
influent water from purifiers A, B, C, and D, respectively; A-E, B-E, C-E,
D-UW, and D-RWmean the effluent water from purifiers A, B, C, and D,

respectively; A-M, B-M, C-M, D-UM, and D-RM mean the membrane
samples from purifiers A, B, C, and D, respectively; UM is an ultrafiltra-
tion membrane, RM is a reverse osmosis membrane, UW is UF effluent,
and RW is RO effluent
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pathogen database, potential pathogens were detected in these
samples. It is worth noting that E. coli was abundant in UF
(1.60%) and RO (6.26%) membranes from purifier D.
Mycobacterium mucogenicum was more frequently detected
in influent water (2.84%) and effluent water of UFmembranes
(0.34%) from purifier D, and influent water (3.46%) in puri-
fier B. Moreover, the abundance of P. aeruginosa, a major
pathogen in nosocomial infections, accounted for 0–0.16%
of total bacteria in the communities tested.

Quantification of potential waterborne pathogens

Of the five pathogens tested, only E. coli and P. aeruginosa
were detected in these samples by qPCR (Fig. 6). The Ct
values of S. enterica, Shigella, and L. pneumophila were all
below or near the detection limit for all samples. Six samples,
including A-I, A-M, C-E, D-UW, D-UM, and D-RM, were

positive for E. coli detection using qPCR, and the gene copy
numbers of this strain varied in the range of 5.11 × 101–2.23 ×
106 copies per liter water or gram membrane. Especially, the
concentrations of E. coli on UF and RO membranes from
purifier D were 2.23 × 106 and 1.16 × 106 copies/g, respec-
tively, although the concentrations of viable E. coli were a
little lower (1.02 × 105 and 3.21 × 105 copies/g) for these
two samples tested by PMA-qPCR. In purifier D, E. coli
was negative in influent water (D-I), whereas a level of
1.52 × 102 copies/L was detected in the effluent water of UF
filters (D-UW).

In P. aeruginosa, the expression of Exotoxin A is under the
control of the regulatory gene regA (Storey et al. 1991; Wolz
et al. 1994). Previous study used regA gene to detect this
important waterborne pathogen P. aeruginosa in municipal
wastewater system and showed high sensitivity and specificity
(Lee et al. 2006). So, regA gene was also selected to quantify

Fig. 5 Heatmap showing the top 50 genera detected in water and membrane samples from different purifiers. Values indicate the log10-transformed
relative abundance of bacteria in each genus. The sample names are the same as those mentioned above
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the concentration of P. aeruginosa in household water puri-
fiers in this study. It was found that the concentrations of the
reg gene, including those for P. aeruginosa, were near or
below the detection limit in all water samples, except for in-
fluent water from purifier C with 1.88 × 105 copies/L. It is also
important to note that P. aeruginosa was most likely to be
found on membranes ranging from 2.44 × 103 to 6.14 × 103

copies/g, but it was not detected in effluent water. Similarly,
M. mucogenicum was identified at a low abundance by se-
quencing, but the presence of this organism was not further
verified, because this bacterium should be contained at or
beyond Biosafety Level-2 for DNA extraction and standard
plasmid construction.

Discussion

Providing safe drinking water for consumers presents a great
challenge as source water quality continues to deterioration.
Household water purifiers are widely used to ensure safe and
high-quality drinking water. Multi-step activated carbon filters
and membrane filters are widely coupled in purifiers to im-
prove drinking water quality. However, little information on
best procedures to ensure the microbial safety of drinking
water is available. In this study, free chlorine and turbidity
were removed significantly after activated carbon filtration.
AC filters are commonly used for pre-filtration or post-
filtration in household water purifier processes because of
their large surface area, microporous structure, and high sur-
face reactivity (El Gamal et al. 2018; McQuillan et al. 2018).
They can efficiently adsorb various organic and odor com-
pounds, significantly decreasing free chlorine in effluent water
(Hoslett et al. 2018). In addition, both UF and RO membrane
filters can reduce turbidity, but RO membranes exhibit better
removal of organic compounds such as NO3-N and TOC than

UF because of their smaller pore sizes (Warsinger et al. 2018).
Previous studies have indicated that a physical separation pro-
cess, i.e., membrane filtration (Albergamo et al. 2019; Schurer
et al. 2019), together with a biological process, i.e., activated
carbon filtration (Korotta-Gamage and Sathasivan 2017), can
effectively remove organic compounds. Our results indicate
that household water purifiers indeed ameliorate water quality,
either in taste or in chemical characteristics.

It should be noted that no bacteria were detected from in-
fluent water cultivated in NA medium, but they were detected
in effluent water, especially after RO treatment. Some factors
such as residual disinfectants, non-cultivability of microor-
ganisms, or inadequate growth conditions may result in the
failure to detect bacteria in influent water samples (Gillespie
et al. 2014; Li et al. 2018). As mentioned above, 0.41–
0.74 mg/L of free chlorine was still present in influent water,
and this could inhibit microbial regrowth. However, free chlo-
rine was depleted with step-by-step filtering. In these cases,
surviving or injured microbes can attach, regrow, and prolif-
erate on the surfaces of padding materials and membranes,
illustrating the microbial health risks of effluent water.
Besides, although no bacteria grew on NA medium, yet more
bacteria were found on R2A plates than on NA medium in
influent water as well as other samples. In general, low-
nutrient R2A medium can be used to recover many species
of bacteria, and is more suitable to determining total counts of
heterotrophic bacteria in drinking water systems when com-
pared with NA medium (Deininger and Lee 2005).

A high level of microbial contaminants was detected at
each stage of filtration. PP cotton filters, as the first step of
purifiers, play a key role in intercepting with microorganisms
or particulate matter. To ensure filtration efficiency, PP cotton
filter should be changed every 2–6 months according to the
manufacturer’s instructions.Moreover, activated carbon filters
provided a good place for bacteria to attach and proliferate in

Fig. 6 Concentrations of potential pathogens in the water phase and membrane samples. a Escherichia coli and b Pseudomonas aeruginosa. The sample
names are the same as those mentioned above
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the absence of free chlorine (Gibert et al. 2013), but the ad-
sorption performance of activated carbon was affected by sur-
face area and microporous structure (McQuillan et al. 2018).
In household purifiers, granular activated carbon provides
limited adsorbing sites, easily leaking carbon for the next step.
In fact, carbon powder was observed on the surfaces of mem-
brane filters (Fig. S3). Similarly, the microorganisms leaked
from activated carbon filters can be intercepted by follow-up
membrane filtration (Hong et al. 2018).

Fouling is an inevitable and long-standing problem in
membrane technology for drinking water treatment. Previous
studies (Gaveau et al. 2017; Helling et al. 2017; Wang et al.
2008) showed that bacteria commonly leaked through mem-
brane filters. In particular, the concentration of microorgan-
isms in effluent water from RO filters was relatively high. RO
membranes are capable to removing organic compounds and
microbes because of their small pore size. However, RO filters
produce large volumes of concentrated water with low water
productivity. Some consumers only use effluents for drinking
aims. In this case, microorganisms easily regrow and prolifer-
ate in moist environments such as filters and water-storing
container because of low usage rate and long-time stagnation
(Su et al. 2009). This factor is often ignored, despite the mi-
crobial health risks to human that these conditions pose. In
contrast, a simple process with one-stage filtration followed
by one-stage post-activated carbon filtration in purifier B is
likely more appropriate from the perspective view of micro-
bial health risk. Activated carbon and membranes are compact
and can be used to obtain safe effluents. Therefore, it can be
inferred that both pre- and post-activated carbon filters, as well
as membrane filters, provide appropriate surfaces for microbi-
al growth and then allow microbes to be released or leak to
effluent water. This was in line with previous studies (Wang
2017; Wu et al. 2012; Wu and Li 1997; Zhou et al. 2012),
which investigated hundreds of purifiers from different areas
of China including Shanghai, Hangzhou, and Tianjin, and
found an excessive rate, i.e., the total number of bacteria in
effluent above 100 CFU/mL and ranging from 13.2 to 87.5%
(Table S2). That was to say, household water purifiers did not
lower but elevated microbial risks, presenting a considerable
problem for human health.

Our results show that the concentration of total bacteria
was a little higher than that of total viable bacteria and signif-
icantly higher than cultivable cells in effluent water and on
membrane samples. Microbes were continuously exposed to
the two most common environmental stressors in household
water purifiers, i.e., free chlorine and oligotrophic conditions,
allowing bacteria to easily enter the VBNC state with low
metabolic activity and no division (Gensberger et al. 2014).
VBNC cells are often undetected using commonly used
culture-based methods and standards, leading to an underesti-
mate of the real microbial population size (Gillespie 2016).
Although traditional quantitative PCR is sensitive and

specific, it detects DNA from living, non-cultivable, and dead
bacteria, leading to false positive results (Liu et al. 2018;
Zacharias et al. 2015). Accordingly, PMA-qPCR can be used
to differentiate between intact and compromised cells
(Slimani et al. 2012; Telli and Doğruer 2019) and is more
suitable for assessing real health risks of household water
purifier condition. In this study, PMA-qPCR revealed 106–
108 copies/L of total viable bacteria in effluent water, and
the difference between the total bacterial cells and cultivable
cells was 2–5 order of magnitude, indicating that a large part
of bacteria entered the VBNC state in this condition. It was
reported that bacteria in the VBNC state still maintain meta-
bolic activity and have the potential to resuscitate and regrow,
regain virulence when the environmental conditions are favor-
able (Kibbee and Örmeci 2017; Pinto et al. 2011). In particu-
l a r , many k inds o f pa thogen inc lud ing Vibr i o
parahaemolyticus (Liu et al. 2018), E. coli (Kibbee and
Örmeci 2017), and L. pneumophila (Slimani et al. 2012) were
found to be able to enter VBNC state. It would be a significant
concern for public health once the VBNC cells undergo a
rapid resuscitation to the fully culturable state (Oliver et al.
1995).

In general, the Shannon and Simpson indices are often used
to indicate microbial community diversity, and the Ace and
Chao1 indices are used to represent species richness (Zhang
et al. 2018). Greater community diversity and richness were
observed in effluent water and on membranes. Therefore, it is
reasonable to suggest that multi-stage pre-activated carbon
treatment increases the microbial diversity of effluent water.
In addition, Proteobacteria was predominant in all sample
except for those in effluent water from purifier B (B-E), which
was the most common group found in drinking water treat-
ment and distribution systems (Bautista-de los Santos et al.
2016; Huang et al. 2014; Perrin et al. 2019). Moreover,
Cyanobacteria was abundant in influent water samples be-
cause of the use of surface water as a source of drinking water
(Fuente et al. 2019). Melainabacteria, as the most abundant
phylum in sample B-E (65.79%), were classified as members
of the non-photosynthetic, anaerobic, and nitrogen fixers and
were believed to represent an ancient lineage of the
Cyanobacteria (Celikkol-Aydin et al. 2016). Effluent water
and membrane samples presented a higher proportion of
Melainabacteria than influent water, indicating this group
could be enriched during purifier treatment. Knowledge about
the presence of Melainabacteria in drinking water systems is
limited, but these bacteria are known to be present in the
human gut (Gerrity et al. 2018; Zamyadi et al. 2019).
Finally, microbial communities in effluent water are more
similar to those on membranes than those in influent water
based on a cluster tree, suggesting purifier treatment proce-
dures may shift communities to those in effluent water.

In terms of potential pathogens, the presence of E. coli, P.
aeruginosa, andMycobacteriumwere detected by using high-

Appl Microbiol Biotechnol (2020) 104:4533–45454542



throughput sequencing and TaqMan qPCR. E. coli is the most
commonly used fecal bacteria, indicating fecal contamination
of drinking water (Coleman et al. 2013; Ikonen et al. 2017). In
addition, P. aeruginosa, as a major pathogen in nosocomial
infections, was frequently detected in drinking water environ-
ments (Bressler et al. 2009; De and Galván 2001; Moritz et al.
2010). Moreover,M. mucogenicum may cause severe disease
and even death in immunocompromised individuals, and its
presence has been demonstrated in water environments such
as potable water used in hospital (Fernandez-Rendon et al.
2012; Loret and Dumoutier 2019). It was interesting to find
that more E. coli and P. aeruginosa was attached to the sur-
faces of membranes than that found in influent and effluent
water, suggesting these bacteria may have been captured and
enriched on membrane surfaces.

The results of the present study suggest that using household
water purifiers does not lower but elevates microbial risk. Some
efforts can be made by both manufacturers and consumers to
improve the performance of household water purifiers, such as
replacing filters regularly before over-saturation or installing a
back-washing program to prolong the life span of a filter (Shao
et al. 2018). Moreover, advanced technologies such as UV-LED
treatment can be introduced as a final step to minimize microbial
contamination in purifiers (Lui et al. 2016).
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