脑智卓越中心发表基于同时电生理fMRI的小鼠睡眠的全脑时空动态性研究
文章来源:脑科学与智能技术卓越创新中心 | 发布时间:2023-03-24 | 【打印】 【关闭】
图1 小鼠睡眠fMRI方法和全脑睡眠状态转换时空模式。(a)基于同步电生理fMRI的小鼠睡眠记录装置示意图。(b)状态转换过程的平均时频图和全脑BOLD信号变化图。
进一步地,利用长短期记忆循环神经网络模型(LSTM RNN model),研究人员发现BOLD信号可以提前预测觉醒状态的转换(图2)。相比于电生理定义的状态转换点,全脑BOLD信号最早可以达到提前17.8s 进行预测。同时,研究人员发现了在以上预测过程中贡献较多的关键脑区,为进一步研究清醒-睡眠调控提供了新的方向。
图2 使用LSTM RNN模型预测睡眠觉醒状态转换方向。(a)LSTM RNN模型的计算流程。(b)模型随间隔时间变化的预测精度及与大脑状态预测相关的脑区。
不同睡眠觉醒状态的大脑具有特定的神经电生理事件,如尖波-涟漪波(sharp wave ripples,SWRs)和纺锤波(spindles)等。利用神经事件触发的(neural-event-triggered, NET) fMRI方法,研究人员揭示了SWRs诱发的状态依赖的全脑时空变化模式。进一步地,研究人员发现与两个单独事件诱发的反应总和相比,耦合的spindle和SWRs诱发了更强的协同效应(图3)。SWRs和spindle在记忆巩固过程中都起着重要的作用,协同效应的发现为理解记忆巩固的机制提供了新的方向。
该研究建立了基于同时电生理记录的小鼠睡眠功能磁共振成像方法,揭示了小鼠睡眠觉醒状态依赖的动态全脑时空特征。该方法的建立为整合局部和全脑睡眠特征提供了新思路,同时,相关小鼠睡眠fMRI数据集的公布为进一步探索睡眠机制提供了有价值的数据来源。
图3 SWRs和spindles耦合的协同效应。
中科院脑智卓越中心梁智锋研究员、童传俊博士研究生和北京大学未来技术学院生物医学工程系段小洁研究员为该论文共同通讯作者,由脑智卓越中心博士研究生余娅琳、复旦大学附属中山医院麻醉科博士研究生邱越共同完成。脑智卓越中心研究员徐敏、研究员张哲、工程师张凯威、薄斌仕、裴孟超、上海科技大学副研究员Garth J. Thompson,复旦大学附属中山医院麻醉科教授仓静、副主任医师方芳、南方医科大学生物医学工程学院教授冯衍秋和北京大学博士李根对该研究做出了重要贡献。该研究得到了中科院脑智卓越中心脑影像中心MRI平台、中科院脑科学数据中心和实验鼠房的大力支持。该研究得到科技部、中国科学院、国家自然科学基金委员会、上海市、临港实验室和广东省的资助。