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Abstract—Image segmentation using deep learning has become
overwhelmingly widespread. However, routine model testing
methods can encounter evaluation inconsistencies or bias, largely
due to how accuracy metrics respond to variations in class share
distribution. Here we address the effects of class imbalance
on model performance evaluation and demonstrates a refined
approach that incorporates image classification efficacy (ICE)
metrics within the context of semantic segmentation in remote
sensing. This evaluation approach was applied in six segmentation
experiments that involve multispectral and lidar data, single or
multiple models tested with the same or different datasets, and
binary and multiclass schemes. ICE metrics revealed unique
aspects of model’s segmentation capabilities compared to pre-
cision, recall, F-score, and overall accuracy. By mitigating the
class imbalance effect, per-class efficacy enables precise class-
level optimization of segmentation models, while whole-class
efficacy facilitates evaluating a model’s potential performance
when adapted to new datasets. The suitability of the Kappa coef-
ficient, ROC-AUC, and PR-AUC for model evaluation under class
imbalance was discussed in comparison with ICE metrics. This
efficacy-enhanced model evaluation protocol can be implemented
for deep learning model training and testing. The routine use of
this evaluation approach will strengthen the dependability and
applicability of segmentation tools in various fields.

Index Terms—Artificial intelligence, performance assessment,
model testing, semantic segmentation, MICE, class imbalance.

I. INTRODUCTION

MAGE segmentation is a vital computer vision task with
extensive applications in various fields, including medical
imaging and earth observation [1]-[6]. With the fast devel-
opment of numerous deep learning models, the integration of
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deep learning into image segmentation has evolved at such a
rapid pace that it has fundamentally revolutionized the entire
field of image segmentation over the past decade. However,
the performance of deep learning models continues to be
assessed using traditional accuracy metrics that are sensitive
to class imbalance. This approach of segmentation evaluation
has, to some extent, contributed to the reproducibility crisis
in deep learning applications [7]-[10]. In the age of artificial
intelligence, it is crucial to transform the evaluation of image
segmentation model performance.

Semantic segmentation, also known as pixel classification
in the field of computer vision, is a widely used image
segmentation technique that assigns each pixel in an image to
a specific class [11], [12]. In many application fields, semantic
segmentation or pixel classification is also referred to as pixel-
based image classification or simply image classification [13]-
[18]. Alongside pixel-based image classification, there exists
object-based image classification [19]. To evaluate these seg-
mentation tasks, the results are compared with reference data,
commonly known as ground truth, resulting in a confusion
matrix or error matrix [20]. From this matrix, various accuracy
metrics can be computed (Table I). While the primary accuracy
metrics used in different academic fields are essentially the
same, they may have different names [2], [21]-[26]. The most
used per-class metrics include precision (and its synonyms),
recall (and its synonyms), specificity, F-score (also known as
F1 score and F-measure), Intersect over Union (IoU), and the
Dice coefficient (Dice) (Table I). Although these metrics orig-
inated from binary segmentations, they have become popular
in multiclass segmentations. On the other hand, whole-class
metrics mainly include overall accuracy (OA or A), the kappa
coefficient, and the means of class-level metrics, such as mean
recall, mean F-score (mF), and mean IoU (mloU) (Table I) [1],
[11], [26], [27].

The overall accuracy of image segmentation is influenced by
the distribution of class shares and the number of classes, and
tends to exaggerate the model’s performance on imbalanced
datasets [28]-[31]. In other words, it is easier to achieve
a high overall accuracy when segmenting image data with
substantial disparities in class shares, such as global burned
area mapping [32]. On the other hand, per-class accuracy
often corresponds to the proportion of class shares [33]-[36].
This phenomenon, known as the “class imbalance effect” [2],
[15], suggests that high accuracy values may not necessarily
indicate desired quality of image segmentation. This is partic-
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TABLE I
GENERAL TERMINOLOGY AND MATHEMATICAL EXPRESSIONS FOR SELECTED METRICS USED FOR EVALUATING BINARY OR MULTICLASS SEMANTIC
SEGMENTATION.

Metric Name

Metric Computation

Metric Definition and/or Interpretation

Per-class Accuracy Metrics

Commission error (Ce) (Prediction-total-based Ce; = RS Rl fb‘_"j g False positive rate and false alarm rate in binary classification.
error) i Over-prediction error relative to class share proportion from
classification.
Omission error (Oe) (Reference-total-based Oe; = n*'jb& False negative rate and miss rate in binary classification.
error) + Under-prediction error relative to class share proportion from
reference.
Precision (P), positive predictive value for the P; = :“ =1-Ce; Positive predictive rate in binary classification. Per-class
positive class, negative predictive value for the it accuracy relative to class share proportion from classification.
negative class, or user’s accuracy for any class
Recall (R), sensitivity, hit rate, or true positive R; = :jr] =1-—0Oej Hit rate, true positive rate in binary classification. Per-class
rate for the positive class, specificity, 7 accuracy relative class share proportion from reference. Some
selectivity, or true negative rate for the tolerance to the class imbalance effect.
negative class, or producer’s accuracy for any
class
2x(P;xR; . ..
F-score F-score ; = % Harmonious mean of precision and recall.
J J
. . R . 2X1n; Lo -
Dice value (Dice = F-score in binary Dice ; = ﬁ Similarity between prediction and reference.
classification) I
Intersect over Union (IoU) IoU; = M'F:Lﬁ Accuracy of image segmentation or object detection.
J +a - "9d
- . U pP;——ti . . .
Precision-based image classification efficacy PE; = J,i,fj Effectiveness of semantic segmentation on the top of random
(PE) == assignment. Model’s performance after the class imbalance
effect is lessened.
P /]
Recall-based image classification efficacy (RE) RE; = - 75 Effectiveness of semantic segmentation on the top of random
== assignment. Model’s performance after the class imbalance
effect is lessened.
PE; +RE; . .
Mean efficacy (Mean E) Mean E; = ]; - The average value of precision- and recall-based image
classification efficacies
Whole-class Accuracy Metrics
Overall accuracy (A) A= Ej:l "#J Percent pixels or objects correctly predicted for the entire data
R . .
Balanced accuracy (mean recall) (MA) ME = Z;]:l + An accuracy measure. Generally insensitive to the class
imbalance effect.
F—s
Mean F-score (mF) mF = Ej:l g;m] The average value of F-scores.
IoU,
Mean IoU (mloU) mloU = ZJJ: 2 + The average value of IoUs.
A_Ef']—1 ni+"45
Kappa coefficient (KC) KC = J, R Agreement of two independent judges after removing chance
D agreement. Invalid and non-interpretable for segmentation
evaluation.
*Zfl_l (n+] )2
Map-level image classification efficacy (MICE) MICE = j — 71::]' > Effectiveness of semantic segmentation on the top of random
1721':1( " ) assignment. Model’s performance after the class imbalance

effect is lessened.

Note: Symbol n is the total sample size, n;; is the number or percent of sample points correctly classified as class j, and J is the total
number of classes. The subscript symbol j+ is the prediction total and +j is the reference total.

ularly relevant when a purpose class has fake high accuracy
while a non-purpose class exhibits fake low accuracy, or vice
versa. As a result, it is impossible to directly compare the
performance among models when the test data consists of
varying class share distributions [12]. Furthermore, these class
share-induced changes in accuracy values can cause erroneous
conclusions regarding the reproducibility of a particular deep
learning model [7]-[10].

Along with accuracy metrics, the kappa coefficient is also
a prominent measure employed in accuracy assessment in re-
mote sensing. Originally developed to evaluate the agreement
between two independent judges while accounting for chance

agreement in social science [37], the kappa coefficient has
become one of the most controversial metrics in accuracy as-
sessment [38]-[40]. Three reasons make the kappa coefficient
inappropriate for accuracy assessment. Firstly, its assumption
of noncorrectness for both judgments is inconsistent with
the accuracy assessment paradigm in image segmentation,
where reference data are presumed to be correct. Secondly, the
chance agreement component (n;4n4;; Table I) depends on
the assumption of independence between judgments, which is
not invalid in deep-learning-based image segmentation, where
training and reference data often originate from the same
population. Finally, the kappa coefficient is not an accuracy
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metric.

The desired segmentation power of a model is characterized
by its ability to consistently achieve high accuracy in separat-
ing classes, particularly confused classes, regardless of fluc-
tuations in class share distribution. However, due to the class
imbalance effect, conventional accuracy metrics can introduce
bias in evaluating model performance and may not reflect the
real segmentation power of the model. The straightforward
connection between the real and apparent segmentation powers
of a model is expressed as follows:

P.=P,-B 6]

where, P, is the model’s real segmentation power, P, is
model’s apparent segmentation power, and B is the bias in
model performance caused by class share variations.

The conceptual model of Eq (1) is well represented by using
image classification efficacy (ICE) metrics, which lessen the
class imbalance effect by considering class share-proportional
random probability as a general baseline (Table I) [41]. If
ICE = 1, the segmentation is perfect; if ICE < 0, the
segmentation is worse than random assignment and is therefore
considered ineffective. The per-class accuracy of the baseline
is equivalent to the class share proportion in percentage terms,
meaning that the larger a class, the greater its accuracy
value. The overall accuracy of the baseline increases with the
skewness of the class size distribution and decreases with the
number of classes. For instance, the overall accuracy for binary
baseline segmentation with a class share ratio of 0.75 : 0.25 is
0.625 (0.75% + 0.252), surpassing that for a class share ratio
of 0.5 : 0.5 (0.5 +0.5%2 = 0.500). These two accuracy values
are both greater than the overall accuracy for a four-class
baseline segmentation with an equal share (4 x 0.25% = 0.250).
Due to this computational mechanism, ICE mitigates the bias
in segmentation performance caused by varying class share
distributions and class counts. To facilitate the applications
of ICE, Shao et al. divided its values into eight scales [41].
According to this scaling, for example, Zheng et al. ’s image
segmentation has reached the extraordinary level (map-level
ICE or MICE = 0.77), confirming the great performance of
their model as indicated by high OA [42].

The ICE metrics are potentially applicable across various
academic fields involving image segmentation, but their ex-
plicit application within this context has not been sufficiently
elucidated. One primary question is, why is there a need for
efficacy metrics when accuracy metrics already exist? Using
six segmentation experiments in remote sensing, this paper
aims to systematically clarify the limitations of segmentation
evaluation using accuracy metrics, explicitly interpret ICE
metrics across diverse segmentation scenarios, and enlighten
efficacy-reinforced evaluation of image segmentation models.
This contribution paves the way for implementing the trans-
formed practices for assessing the real segmentation power of
deep learning models in various fields.

II. SEGMENTATION EXPERIMENTS

Each image segmentation task is unique and there is no
one-size-fits-all evaluation method for different segmentation
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Fig. 1. Comparison of two image segmentations, assuming that the true
positive rates remain the same for the two segmentations. (a) two classes
have an even share. (b) two classes have uneven class shares.

tasks. We used six segmentation experiments to demonstrate
and explain why and how an efficacy-reenforced evaluation
approach is implemented with model testing. In six segmenta-
tion experiments, multispectral and lidar data were used as
input data, single or multiple models were tested with the
same or different datasets, and binary and multiclass schemes
were both considered. Depending on the specific nature of
image segmentation, the experimental results were evaluated
with both accuracy and efficacy metrics. Class imbalance was
quantified with class share percentage for binary segmentation
and the Coefficient of Variance (CV) of class share proportions
for multiclass segmentation.

A. Experiment I: A hypothetical case (balance vs imbalance)

This experiment demonstrates how moderate changes in
class share proportions affect per-class and whole-class ac-
curacy and efficacy. It is assumed that the true positive
rates remain approximately the same, one image segmentation
involves an even distribution (50 : 50; Fig. 1a), while the other
involves an uneven distribution between two classes (32 : 68;
Fig. 1b).

B. Experiment II: Binary segmentation (building vs nonbuild-
ing), single model, single data source

Experiment I was to differentiate building pixels from non-
building pixel (background). The dataset was Massachusetts
Buildings Dataset (MBD) [43], one of the most used building
segmentation datasets in computer vision community. MBD
consisted of 151 images and each of them sized 1,500 x 1,500
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pixels covering an area of 2.25 square kilometers (pixel size
was 1 m). Buildings occupied a small portion of the landscape
and this segmentation exercise involved a class imbalance
problem. We randomly divided the dataset into training set,
validation set, and test set with 106, 15, and 30 images,
respectively. Subsequently, the testing datasets were evenly
split into three subsets, and each subset maintained a class
proportion ratio of approximately 4 : 1 (uneven), 9 : 1 (more
uneven), and 19 : 1 (most uneven), respectively. We trained
a vanilla U-Net using training and validation sets with binary
cross entropy loss, and evaluated model performance against
each of the three subsets of the test data.

C. Experiment Ill:Binary segmentation (change
change), two models, single data source

VS no

Pang et al. developed a deep-learning model called
“prior semantic information-guided change detection” (PSI-
CD), showcasing its excellence through various accu-
racy metrics [44]. We used the same change detec-
tion dataset of the WHU Building dataset (WHU-CD)
http://gpcv.whu.edu.cn/data/building_dataset) for this experi-
mentation. The WHU-CD dataset consisted of bitemporal im-
ages, covering an area of 20.5 km?, collected in Christchurch,
New Zealand, in 2012 and 2016, respectively. This dataset
includes 2,386 pairs of 512 x 512 images with a resolution
of 0.3 meters. Each image pair has a corresponding change
label. The total number of image pairs was randomly divided
into two subsets: 1,559 for training and 827 for testing. Class-
share ratios between change and no change were computed
for each image pair. Subsequently, the 827 test images were
nearly equally divided into three subsets based on their class-
share ratios. The average class share proportions were 15:1
(No change to Change) for subset 1 (uneven), 36:1 for subset 2
(more uneven), and 122:1 for subset 3 (most uneven). The FC-
EF model is an extended U-Net architecture, comprising four
max-pooling and upsampling layers. The PSI-CD is a Siamese
convolutional neural network structure, and consists of three
modules. A semantic segmentation module is a pre-trained
network, a change analysis module calculates the change
features from the two-period semantic features, and a decoder
module is used to output the final change detection patch.

D. Experiment IV: Multiclass segmentation (land use types),
multiple models, single data source

Using Landsat TM data acquired in September 2007, level-I
land cover maps were developed for the midwest of the USA.
Covering an area of 1,323 km?, the landscape predominantly
featured Agriculture (64%), followed by Forest (19%), Urban
areas (11%), and Water (6%). A group of graduate students
used conventional supervised and unsupervised image classi-
fication algorithms with Erdas Imagine to generate 23 land
use and land cover maps.The purpose of this exercise was
to compare accuracy variations among land use land cover
maps generated with the same dataset. Each map was assessed
using with the same 4,800 randomly sampled points labeled by
referring to two-meter-resolution RGB orthophotos acquired
by the US National Agriculture Imagery Program (NAIP)

in 2007. The ten best classifications were selected for this
comparative analysis based on overall accuracy and MICE.

E. Experiment V:Multiclass segmentation (land use types),
single model, single data source

Experiment V involved multi-modal joint segmentation
tasks using the N3C-California dataset and the IKD-Net
framework [36]. N3C-California is a comprehensive, anno-
tated dataset that includes over 10,000 LiDAR and imagery
patches. IKD-Net is an innovative and efficient architecture
designed to extract features directly from raw multi-modal
data rather than from their simplified derivatives. Its end-to-
end, disentangled dual-stream backbone ensures the integrity
of information across heterogeneous modalities. The testing
dataset, drawn from the N3C-California dataset, comprised
1,080 image patches, each sized at 512 x 512 pixels, and
included four classes: Ground, Tree, Building, and Other.
Class Ground emerged as the dominant class, Urban was the
codominant class, and Other was the smallest class. The CV
was computed for each labeled image patch across the four
classes. Subsequently, all testing image patches were ranked
based on their CV values and then evenly divided into three
subsets representing high (CV = 1.29), middle (CV = 0.83),
and low (CV = 0.71) unevenness. Following the methodology
outlined by Wang et al. [36], we executed the IKD-Net on each
subset of testing-image patches integrated with Lidar data.

F. Experiment VI: Multiclass segmentation (forest types), sin-
gle model, data from different areas

Maxwell et al. predicted forest community types, total
aboveground live biomass (AGLBM), and species-specific
AGLBM for the states of Michigan, Oregon, and West Vir-
ginia, USA [45]. For the task of forest type mapping, the
input data included the Landsat multispectral time series and
the 10 m spatial resolution National Elevation Dataset (NED).
Random forest was used to differentiate forest community
types. The number of forest types ranged from seven to nine
across the three states. These forest landscapes vary in terms
of forest characteristics, terrain, management practices, and
disturbance histories, all of which affect the model’s per-
formance. Notably, distinguishing between broadleaved tree
species, especially in West Virginia, proved more challenging
than distinguishing between coniferous and broadleaved trees
in Michigan and Oregon. The CV based on plot counts by
forest types revealed differences in class share unevenness
among the three states: 0.73 for Michigan, 1.20 for Oregon,
and 1.89 for West Virginia.

III. RESULTS

The model performance from the six segmentation examples
or experiments is expressed with precision, recall, F-score,
precision-based efficacy, recall-based efficacy, mean efficacy,
overall accuracy, and MICE (Table II). In the subsequent four
subsections, we provide a summary of the general trends and
key takeaways.

In binary segmentation, per-class efficacy is not reg-
ularly affected by class share proportion. If FP equals
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5
TABLE II
SELECTED RESULTS OF SIX SEGMENTATION EXPERIMENTS.
Segmentation Class Precision-based ~ Recall-based Mean
sme Scenario Class Name Share  Precision  Recall ~ F-score Overall Accuracy MICE
Experiment (%) Efficacy Efficacy Efficacy
. Green 500 0950  0.864  0.905 0.900 0.727 0.814
. A: Even Shares Blue 500 0875 0955 0913 0.750 0.909 0.830 0.909 0.818
] Green 318 0889 0857 0873 0.837 0.790 0.814
B: Uneven Shares Blue 682 0934 0950 0942 0.79 0.843 0.818 0.920 0.817
) Building 205 0645 0815  0.720 0.554 0.767 0.661
A: Uneven Non-Building 795 0949 0884 0916 0750 0437 0.593 0870 0602
I ] Building 108 0602 0816  0.693 0.554 0.794 0.674
B: More Uneven Non-Building 892 0977 0935 0955 0.785 0.395 0.590 0.922 0.594
] Building 52 0573 0891  0.697 0.550 0.885 0717
€: Most Uneven Non-Building 948 0994 0964 0979 0.881 0301 0.591 0960 0-593
] Change 6.3 0878 0763 0816 0.87 0.747 0.804
A: FC-EF Uneven No-Change 937 0984 0993 0988 0.749 0.887 0812 0979 0817
] Change 27 0838 0759  0.797 0.833 0.753 0.791
B: FC-EF More Uneven No-Change ~ 97.3 0993 0996  0.994 0.753 0.849 0.798 0989 0-801
Change 0.8 0348 0254 0294 0.342 0.248 0.288
i . FC-
€: FC-EF Most Uneven No-Change 992 0994 0996 0995 0.249 0.520 0337 0990 0384
] Change 6.3 0951 0884 0916 0.948 0.876 0912
D: PSI-CD Uneven No-Change 937 0992 0997  0.994 0.877 0.952 0915 0990 0914
] Change 27 0945 0875  0.909 0.943 0.872 0.908
E:PSLCD More Uneven - No Change 973 0997 0999 0998 0872 0.948 0910 0995 0910
] Change 0.8 0941 0885 0912 0.940 0.885 0913
F: PSCCD Most Uneven  No Change 992 0997 0943 0969 0.885 0.943 0914 0996 0914
Water 62 0909 0915 0912 0.903 0.910 0.906
Urban Area 109 0739 0646  0.689 0.707 0.602 0.655
v Forest 193 0858 0724 0785 0.824 0.658 0.741 0.868 0.757
Agriculture 636 0888 0943 0915 0.691 0.844 0.768
Other 14 0302 0830 0443 0.293 0.828 0.560
A Tree 23 0923 0864 0893 0.901 0.825 0.863
A CV =071 Building 37 0974 0972 0973 0.961 0.958 0.960 0.930 0.893
Ground 426 0954 0935 0944 0.920 0.886 0.903
Other 14 0331 0856 0477 0.321 0.854 0.588
o Tree 183 0930 0860  0.894 0915 0.828 0.872
B: CV =083 Building 296 0978 0979 0979 0.969 0.971 0.970 0.941 0.905
\Y Ground 507 0967 0950  0.958 0.933 0.899 0.916
Other 1.9 0314 0819 0454 0.301 0.815 0.558
o Building 109 0967 0968  0.967 0.963 0.964 0.963
G Cev=12 Tree 146 0945 0880 0911 0.935 0.859 0.897 0.943 0.871
Ground 726 0984 0955  0.969 0.941 0.838 0.889
Other 1.6 0316 0833 0458 0.305 0.830 0.568
e Tree 183 0932 0867 0898 0916 0.837 0.877
D: Entire Dataset Building 244 0974 0974 0974 0.966 0.966 0.966 0.938 0.896
Ground 557 0971 0949  0.960 0.935 0.884 0.910
A: Michigan CV = 0.73 Six classes — — — — — — 0.631 0.535
VI B: Oregon CV = 1.20 Nine classes — — — — — — 0.698 0.598
C: West Virginia CV = 1.89  Eight classes — — — — — — 0.785 0.557

FN, precision equals recall in binary segmentation; thus, the
major class has a greater precision (or recall) value than
the minor class. When FP does not equal FN, precision and
recall also differ, but the F-score of the major class exceeds
the F-score of the minor class (Figs. 2a—2c). Conversely,
the average value of precision- and recall-based efficacy of
the major class does not necessarily differ from that of the
minor class (Figs. 2d-2f), reflecting different interpretations
of segmentation quality. The similar ICE values produced by
Experiments I and III (Fig. 2) indicate that the two classes have
similar segmentation qualities despite the major class being
more accurate as indicated by F-score. Sometimes ICE values
display an opposite trend to accuracy values (Experiment II
in Fig. 2), which explains why the major class has worse
segmentation qualities than the minor class.

In multiclass segmentation, per-class efficacy fine-tunes
accuracy distribution patterns. In multiclass segmentation,
the level of per-class accuracy is affected by both class share
proportion and misassignment errors in multiple classes; thus,
the relationship between per-class accuracy and class share
proportion in multiclass segmentation is not as strong as in
binary segmentation. Nevertheless, a dominant class can still
have relatively high accuracy (Figs. 3b and 2e) but may
not have high efficacy (Figs. 3c and 3f). When a small
class has high accuracy (Fig. 3b), it must have high efficacy
(Fig. 3c). The different patterns of accuracy (Figs. 3b and 3c)
and ICE (Figs. 3e and 3f) indicate that ICE can reduce the
class imbalance effect at the class level. For example, both
the largest and smallest classes have high accuracy (F-score
of Agriculture = 0.915 and F-score of Water = 0.912), but
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Fig. 2. Changes in F-score and Mean ICE with class share ratios in three segmentation experiments (Table II). (a)-(c) F-score. (d)—(f) Mean Efficacy (Table I).

(a) (b)
70 10
0.9
60
08
50 07
S
E 40 . 0.6
Experiment 2= 5 05
© 30 3
2 Lo04
2
S 5 03
02
10
l 01
0 u 0.0
Agriculture  Forest UrbanArea Water Agriculture
(d) (e)
60 1.0
03
50 08
g 40 07
; @ 06
Experiment E 3 ‘g 05
vy oy L oa
=
20 03
10 02
01
0 - 0.0
Ground  Building Tree Other Ground

(c)

Mean ICE

Agriculture Forest Urban Area Water

()
09
08
0.7
06
05
0.4
03
02
01
00

Other

Forest UrbanArea Water

Other

Mean ICE

Building Tree Ground  Building Tree

Fig. 3. Changes in per-class F-score and Mean ICE with class share distribution in two segmentation experiments with multiple classes (Table II). (a) & (d)

Class share distribution. (b) & (e) F-score. (¢) & (f) Mean ICE (Table I).

Agriculture has a much lower ICE value (0.768) than Water
(0.906; Figs. 3a and 3c and Table II). When a class is severely
rare (e.g., Other in Fig. 3d), its accuracy can be rather low
(Fig. 3e), but its efficacy may not be as low relative to that
of other classes (Fig. 3f). The efficacy histograms suggest that
Water and Building are segmented most effectively among the
four classes in Experiment IV, and Urban Area and Other
are segmented least effectively among the four classes in
Experiment V.

Class share distribution does not typically affect whole-
class efficacy. Overall accuracy is proportionate to the un-
evenness of class share distribution, particularly when image

segmentation is at an ordinary accuracy level (Figs. 4a and 4d).
This trend becomes less notable when image segmentation
is highly accurate (Figs. 4b and 4c). Conversely, the distri-
bution pattern of overall accuracy differs for MICE, being
independent of class share unevenness (Fig. 4). The stable
MICE values occur in binary segmentations (Figs. 4a and 4b),
demonstrating its insensitivity to class share distribution. In
multiclass segmentation, the variations in MICE values show
different compositions of confused multiple classes between
reference datasets (Figs. 4c and 4d and Table II).

Efficacy amplifies the signal for the performance of
segmentation models. Let p; be the share proportion of class
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CV stands for Coefficient of Variance for class share proportions.

1, then the MICE of binary segmentation is computed as
(Table I):

_ A-pi-(1-p)?® _ A pi+(1=p1)?
MICE = 1710%7(17;1)1)2 T 2pi(I-p1) 21171(1—1)1)

2)

Thus, the slope with respect to A of MICE is inversely
proportional to 2p; (1 — p;). The minimum slope is 2 under an
even share distribution (p; = 0.5). The more skewed the share
distribution, the greater the slope (Fig. 5a), which implies that
when class shares are extremely uneven, a small difference in
overall accuracy can lead to a large difference in MICE; thus,
MICE can enhance the expression of segmentation quality. For
example, in Experiment III, two deep learning models, PSI-
CD and FC-EF, were tested against the same reference data
with a class ratio of 99.2 : 0.8, which resulted in similarly high
overall accuracy (0.996 and 0.990) but substantially different
MICE values (0.914 and 0.384, Table II), confirming that the
PSI-CD model is much more effective than the FC-EF model
for image segmentation (Fig. 5b).

IV. DISCUSSION

The outcomes of the six experiments primarily focus on the
comparison between accuracy and efficacy metrics as a means
of assessing image segmentations. Further interpretation of
the results is needed to fully elucidate the significance of the
transformed practice of segmentation evaluation with ICE.

Accuracy metrics lead to inconsistent evaluations of
model performance between training and application. The
reproducibility of deep learning models means their consistent
performance for image segmentation [9]. In remote sensing,
image segmentation is aimed to generate maps. Traditionally,

one trained image segmentation model normally results in a
single immediate map product. Contemporary segmentation
using deep learning makes it possible to transfer a trained
model to a new geographic location where new maps are made,
and consistent performance of deep learning models is crucial.
Because the test data used for evaluating a trained a deep
learning model by the deep learning engineer may be different
from the data from a user in terms of class share distribution,
accuracy values may not be repeatable (Fig. 6). This type of
variation in accuracy is inevitable if a deep learning model is
trained with lab-controlled benchmark data but it is applied
with real-world data [52]. For example, if the class of interest
is a dominant class for the test data with training but it is a rare
class with application, its F-score would be lowered in appli-
cation (Fig. 6a), signifying the reproducibility problem. The
way overall accuracy is influenced by class share distribution is
different from F-score. Because class share distribution affects
accuracy values, a confusion matrix must be a representative
of the real-world population [26]. Perhaps this ought to be
a gold standard for accuracy assessment in remote sensing.
In this regard, geographically stratified partitioning techniques
are not recommended if the study area is not uniform or
class proportions change across a landscape. Traditionally,
stratified random sample points are located by using the map
product under assessment to generate a confusion matrix.
When multiple maps for the same geographical area need to
be assessed, such stratified random sampling is not an efficient
option because class proportions may vary among these maps.
It is therefore easier if reference information is collected with
simple random sampling for the entire mapping area though
the initial investment may be high. This practice is similar to
that benchmark data are segmentate by using different models.
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Because deep learning models are usually trained on large
amount reference data, even a fraction (e.g., 10%) of the
reference data would be sufficient for generating a population
confusion matrix for a map under evaluation.

Jointly using accuracy metrics cannot resolve the class
imbalance effect. If the overall quality is intended to capture
every facet of map quality, it necessitates the incorporation of
multiple accuracy metrics [53]. Typical binary classification
results in a confusion matrix involving a positive class and
a negative class [20]. In cases where either class can be
considered the positive or interesting class, it is possible
to compute precision and recall for each class pair, as is
done in multiclass scenarios. In the hypothetical example
above (Experiment I; see Fig. 1), the true positive rate of
each class remained relatively constant despite changes in
class proportions, resulting in unchanged recall values for
each class between the two segmentations. This scenario

supports the view that recall is theoretically insensitive to
class imbalance [54]. However, because precision is sensitive
to class imbalance, F-score is still proportionate to class
share proportion. Using multiple accuracy metrics is essential
because different metrics express different aspects of seg-
mentation quality. Nevertheless, it is important to note that
many accuracy metrics are correlated [26], and therefore using
multiple metrics may only partially avoid the class imbalance
effect. For example, researchers often use mean F-score and
mean IoU, which are effective in many cases [5], [46]-[51].
Plotting 182 pairs of these two metrics from these publications
reveals an almost one-to-one correlation (R? = 0.99; Fig. 7a).
Although the correlation between mF and overall accuracy
is not as strong (R? = 0.84; Fig. 7b), it is worth noting that
overall accuracy and mF are significantly related. Since overall
accuracy suffers from the class imbalance effect, mF and mloU
also influenced by the class imbalance effect.
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Efficacy metrics target model’s real segmentation power.
The performance of a model with moderate accuracy and
less pronounced class imbalances is more sensitive to class
distribution when assessed using accuracy metrics, whereas
per-class and whole-class efficacy values remain relatively
stable (Figs. 2 and 4). In such scenarios, ICE values with slight
variations are consistent indicators of model performance.
On the contrary, in highly skewed distributions, the overall
accuracy may approach 1, and slight fluctuations in overall
accuracy can lead to significant changes in MICE (Fig. 5).
Under such circumstances, MICE serves as an amplifying
indicator of model performance. The stable and fluctuating
responses of ICE metrics to varying class share distributions
and accuracy values are both crucial expressions of a model’s
real segmentation power. More specifically, per-class efficacy
enhances the detection of classes for the precisely fine-tuning
of segmentation models, and whole-class efficacy amplifies
the signal of model performance for the overall comparison
of segmentation models.

When confronted with an extremely rare class in image
segmentation, additional efforts are often made to enhance its
segmentation [3], [27]-[29], [31], [34], [55], [56]. This class
imbalance problem in semantic segmentation sometimes can
be challenging for deep learning engineers, especially when
the rare class holds significance for accurate segmentation. The
use of accuracy metrics sensitive to class share distribution can
exacerbate this issue [3], [32]. When evaluating segmentation
using ICE metrics, a small class may not necessarily be the
least effective. As depicted in Fig. 2e, ICE metrics prove es-
pecially valuable when dealing with highly uneven class share
distributions.In this regard, ICE metrics should be incorporated
into the optimization process of a deep learning model. By
using ICE metrics in the training stage, model’s inconsistent
behaviors from training to application can be relieved, and the
segmentation strategies of individual classes, rare or common,
can be determined without many influences of class imbalance.
Deciding whether to prioritize the improvement of rare class
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Fig. 8. Graphic comparison of accuracy assessment and model performance
evaluation, including conventional and enhanced evaluation approaches.

segmentation depends on the ICE values of individual classes.

The traditional accuracy assessment of segmentation out-
comes and contemporary evaluations of deep learning model
performance are two separate but related tasks (Fig. 8).
The use of class imbalance-sensitive accuracy metrics to
quantify model performance introduces uncertainty regard-
ing the model’s real segmentation power. Therefore, reliance
on accuracy metrics alone is insufficient for evaluations of
model performance. In contrast, ICE metrics are designed
to determine the effectiveness of image segmentation, and
are both interpretable and resilient to the class imbalance
effect. Efficacy metrics can be used in the same way as
accuracy metrics in model’s validation during training. The
incorporation of ICE metrics into model’s validation can
improve feedback regarding the optimization and fine-tune
of deep learning models. Considering that foundation models
have begun to gain popularity in many fields involving image
segmentation and related tasks [6], [57], the integrated use of
accuracy and efficacy metrics is becoming essential to ensure
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model’s reliable applications.

ROC-AUC and PR-AUC vs ICE. Deep learning models
are often evaluated along a range of decision probability
thresholds during its training. The overall performance of a
model can be shown by the area under the receiver operating
characteristic curve (ROC-AUC) for a positive class in binary
segmentation. In remote sensing, an ROC-AUC is a plot
between false positive rate (FPR) as = and true positive rate
(TPR) (also called recall) as y at different decision thresholds
(Fig. 9a) [22]. The greater an ROC-AUC value, the stronger
mode’s performance. The total ROC-AUC consists of two
parts divided by class size-independent random assignment
line when TPR = FPR. The area below the ‘base line’ is
a constant (0.5) and thus, the performance of a model is
characterized by the area above the baseline assuming TPR >
FPR. At a given decision threshold, the segmentation power
of a model is proportional to the difference between TPR
and FPR. Despite TPR and FPR are individually insensitive
to class imbalance [54], ROC-AUC’s tolerance to the class
imbalance effect has not reached a broad consensus. Perhaps
this is because the baseline does not consider class imbalance.
For multi-class segmentation, which is common in remote
sensing, ROC-AUC needs to be adjusted [28].

The area under precision-recall curve (PR-AUC) is also
used to evaluate the performance of deep learning models
(Fig. 9b). PR-AUC is computed by including or excluding
the area below the class proportion baseline (i.e., n;/n) [25],
[26], [28]. Past studies show its varied degrees of sensitivity to
class imbalance. Precision is sensitive to class imbalance but
recall is not; the effective area of PR-AUC, after deducting
the area below n; /n baseline, can reduce the class imbalance
effect (Fig. 9b). The effective area of PR-AUC is theoretically
consistent with ICE metrics because both consider the random
classification baseline defined as n;/n. Therefore, PR-AUC
and ICE are supposed to be mutually supportive.

ROC-AUC and PR-AUC are used for per-class evaluations
while ICE metrics are useful for per-class and whole-class
evaluations; ROC-AUC and PR-AUC are computed with mul-
tiple confusion matrices obtained from a model under training
while ICE metrics are derived from a single matrix that can
be obtained from a single execution of a trained model.

V. CONCLUSIONS

The primary motivation behind evaluating segmentation
models’ performance is to ensure their reliability for their
applications. A fundamental requirement is that these models
demonstrate consistent prediction accuracy when implemented
with new data. Because accuracy metrics are largely sensitive
to class share variations, they struggle with the characterization
of consistent performance. Consequently, solely relying on
accuracy to assess segmentation outcomes may not reflect
model proficiency. In contrast, the metrics of image classi-
fication efficacy consider class imbalances and offer unique
insights crucial for the evaluation of model performance.
By utilizing both per-class and whole-class efficacy metrics,
we can effectively compare segmentation qualities and fine-
tune models with precision. Integrating efficacy metrics into
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Fig. 9. Illustration of the area under a curve as a metric for the evaluation
of model performance for a set of decision thresholds. (a) Area under the
receiver operating characteristic curve (ROC-AUC). (b) Area under precision-
recall curve (PR-AUC). Each AUC contains an effective area, critical for the
evaluation of model performance.

model training and testing enhances models’ reliability for
their operational use. It is hopeful that this efficacy-reinforced
approach will contribute to a higher standard for evaluating
deep learning models that are used to address real-world
challenges.

The way this enhanced evaluation approach is implemented
is shown in the six samples of this paper. Although these
examples are from the field of remote sensing, the evalua-
tion technique is applicable in image segmentation in other
fields, such as medical imaging. Consequently, the enhanced
information on model performance can help narrow the chasm
from model evaluation to clinical impact [10], [58].

The six segmentation experiments were limited to semantic
segmentation. Scene segmentation and object-based segmen-
tation are not considered in this study. These examples are
from remote sensing but segmentation cases from other fields
need to be investigated with ICE metrics. This study did not
consider the impacts of ICE metrics on the estimation of
application variables, such as class area and change rates. The
segmentation experiments in this study did not incorporate
ICE metrics into model’s training. In particular, we did not
conduct segmentation experiments with repeated random data
partitioning.
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