加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研动态 > 科研进展

植生生态所科研人员揭示植物激素调控菌根共生的分子机理

发布时间:2013-12-25 【字体: 】【打印】 【关闭

1217日,国际学术期刊Cell Research在线发表植物生理生态研究所王二涛研究组关于菌根共生的最新研究成果“A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants”。该研究详细揭示了植物-菌根共生的转录调控机理,并阐明植物激素赤霉素通过DELLA蛋白调节菌根共生的分子机制。 

菌根是指植物与土壤中的菌根真菌形成的共生体,分布广泛,超过80%的陆生植物都能够与菌根真菌形成共生体。目前的研究表明植物-菌根真菌共生是植物由水生向陆生植物进化所必须的,植物-菌根共生的建立在自然界有巨大的竞争优势。在植物-菌根共生中,真菌一方面从植物获得碳源等有机物作为自己的营养,另一方面能够帮助植物高效吸收土壤中的磷、氮等营养元素,显著促进植物的生长。研究植物-菌根共生可能为降低农作物对磷肥和氮肥的利用提供理论基础。 

研究人员发现GA处理植物导致菌根共生能力下降,且呈现出浓度依赖的表型,而与共生相关的下游基因的表达也受到明显的抑制。而植物GA信号通路关键基因DELLA突变体不能与菌根共生,预示着DELLA可能是GA调节植物生长和菌根共生的关键基因。研究人员通过酵母双杂交筛选等试验获得DELLA的互作的GRAS类型的转录因子DIP1,并且DIP1突变导致植物菌根共生能力的下降。进一步的研究表明DIP1能够与调控菌根共生的转录因子RAM1直接相互作用,从而调节植物中参与菌根共生下游基因的表达。该研究第一次清晰地揭示出植物-菌根共生过程中的转录因子复合物DELLA-DIP1-RAM1,为我们理解菌根共生如何受环境调控提供了理论基础。 

该研究得到了中国科学院战略性先导科技专项的资助。