加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研动态 > 科研进展

上海有机所在可见光引发的无金属的惰性键选择性官能化研究取得进展

发布时间:2017-09-06 【字体: 】【打印】 【关闭

烷氧自由基是化学与生物研究重要的活性中间体然而传统条件下产生烷氧自由基需要加热、强氧化剂、紫外光照射等剧烈反应条件。近来,陈以昀课题组发现在温和的可见光催化还原条件下,N-烷氧酞酰亚胺可以产生烷氧自由基进而发生选择性的惰性烷基碳氢键活化官能化反应(Angew. Chem., Int. Ed.2016, 55, 1872-1875);同时在温和的可见光催化氧化条件下,环状三价碘试剂可以辅助环状与线性醇产生烷氧自由基,进而发生选择性的惰性烷基烷基键断裂官能化(J. Am. Chem. Soc.2016, 138, 1514-1517)与惰性羰基烷基键断裂官能化反应(Angew. Chem., Int. Ed.2017, 56, 2478–2481)。但是,目前的可见光催化氧化还原条件仍需要重金属光催化剂的使用,对于药物合成、材料科学、生命科学的应用带来了困难。 

中国科学院上海有机化学研究所生命有机化学国家重点实验室的陈以昀课题组首次报道了汉斯酯与N-烷氧酞酰亚胺衍生物在温和条件下形成电子给受体复合物(electron donor-acceptor complex)。该电子给受体复合物被一系列光谱与机理实验证实,从而展现了汉斯酯全新的反应模式。该复合物作为关键中间体吸收光谱红移从而具有可见光吸收,在可见光照射下无需金属光催化剂即可发生单电子转移产生一级、二级、三级的烷氧自由基,可以实现选择性的惰性碳碳键断裂烯丙基化和烯基化反应(Angew. Chem., Int. Ed.2017, DOI:10.1002/anie.201707171.)该工作为无金属的惰性键选择性官能化研究及可见光引发的新型化学反应机理设计提供了全新的思路。     

上述研究工作得到国家自然科学基金委、国家重大科学研究计划、中国科学院战略性先导科技专项(B类)、生命有机化学国家重点实验室及中国科学院的资助。 

  图一:可见光引发的无金属的惰性键选择性官能化反应