加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研动态 > 科研进展

福建物构所在分子笼光控催化发散合成方面取得新进展

发布时间:2025-06-23 【字体: 】【打印】 【关闭

1. 分子笼光控双路径切换催化示意图

自然界的光合作用系统通过精妙的光控机制实现能量与物质的高效转化,而人工模拟这一过程始终是化学领域的重大挑战。传统光开关催化剂多局限于活性“启停”控制,难以在单一催化剂内实现产物路径的主动切换。金属有机笼凭借其可定制的空腔微环境,为调控反应选择性提供了理想平台。然而,现有分子笼体系大多依赖多笼协同或结构重组才能实现光切换催化,开发具有光控双路径催化发散合成能力的单一分子笼体系仍充满挑战。

基于此,中国科学院福建物质结构研究所结孙庆福/杨健团队报道了一种单笼的光控双路径切换催化体系。作者创新性地利用通过紫精功能化的三齿配体与稀土Eu(III) 的自组装,构筑了一种具有光氧化还原活性镧系有机四面体笼Eu4L6。该分子笼能实现在单一结构框架内光控双反应路径可切换催化:在365 nm光照下催化四芳基硼酸盐发生氧化偶联反应(生成联芳基+酚类双产物),而在黑暗环境中则触发催化分解路径(生成单芳烃)。晶体结构与EPR波谱证实,分子笼内紫精单元的空间隔离有效抑制了自由基二聚,提高了电子传递效率,为双路径切换提供了结构基础。同时,该团队结合原位光谱、EPR捕获和理论计算等手段提出了其可能的双路径切换催化机制。光激发下使得中间体能够克服高反应能垒,从而进行氧化偶联反应路径;而黑暗条件下电荷转移复合物的形成使得轨道能量更加匹配,促进了底物的催化分解过程。

本工作通过单一自组装配位笼实现了光控发散合成的创新范式,为设计具有可编程与可切换活性的智能光催化体系提供了新思路。该研究成果近期发表在《德国应用化学》(Angew. Chem. Int. Ed.,DOI: 10.1002/anie.202510095)上,文章的第一作者是上海科技大学与中国科学院福建物构所联培博士研究生唐可涵,通讯作者是杨健副研究员和孙庆福研究员。该研究得到国家自然科学基金及国家重点研发计划等项目的支持。

论文地址:https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202510095